About us

A Szentágothai János Kutatóközpont a PTE korszerű, nemzetközi tudományszervezési és menedzsment normák szerint kialakított új intézménye, amely az élettudományi, élettelen természettudományi, valamint környezettudományi oktatás...

Tovább

Login


Retinal neurobiology research group

  • Research concept
  • Members
  • Publications
  • Awarded projects
  • Services
  • Laboratories, instruments
  • Galleries

1. Retinal signalization team: Dr. Róbert Gábriel, Andrea Kovács-Valasek

Our research focus is to expand our knowledge on the mechanisms of metabolic retinal degenerations by exploiting experimental work with animal models. We explore how metabolic mechanisms that mediate human retinal degenerations induce retinal cell loss, and which biochemical signaling pathways are involved in mechanisms that eventually impair vision. Our results will reveal the potential rescue mechanisms to avoid retinal degeneration by blocking the degeneration pathways or by enhancing mechanisms that serve neuronal protection. The knowledge on this latter issue will allow us to test and design new pharmacological compounds. Throughout these experiments we will also gain information on the mechanisms of retinal information processing, neuronal degeneration and neuronal protection.

2. Retinal electrical synapses team: Dr. Béla Völgyi, Dr. Santiago Rebolledo Antúnez, Dr. Tamás Kovács-Öller, Gábor Debertin, Alma Ganczer, Ádám Tengölics, Márton Balogh, László Albert

Over 85% of the information perceived by our nervous system is processed by the retina, thus it is essential to understand how the retinal neuronal hyper-network works. Electrical synapses have been known for some 40 years, however their crucial role in visual information processing has only become obvious in recent years. Our team performs experiments to show that electrically coupled retinal neuronal networks play important roles in higher visual functions. We examine the expressional changes of the gap junction forming connexin proteins during the postnatal development and/or induced by changes in the environment. Our work particularly focuses on those inner retinal gap junctions that are formed by ganglion and amacrine cells (ganglion-ganglion, amacrine-amacrine and amacrine-ganglion) and participate in the synchronization of ganglion cell action potentials. We study how such ganglion cell population activity encodes certain visual patterns or visual cues. We also study how the function of electrical and chemical synapses affect each other and if they interfere and/or cooperate to serve signaling. Results of our research will contribute to algorithms for the stimulation of retinal prostheses and/or to provide data to design high performance bionic eyes for robotics.

Retinal signalization team:

Kiss P, Szabadfi K, Horvath G, Tamas A, Farkas J, Gabriel R, Reglodi D (2013) Gender-dependent effects of enriched environment and social isolation in ischemic retinal lesion in adult rats. Int. J. Mol. Sci. 14, 16111-16123. http://www.ncbi.nlm.nih.gov/pubmed/23921682

Szabadfi K, Pintér E, Reglodi D, Gábriel R (2014) Neuropeptides, trophic factors and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. Int. Rev. Cell Mol. Biol. 331, 1-121. http://www.ncbi.nlm.nih.gov/pubmed/24952915

Szabadfi K, Estrada C, Fernandez-Villalba E, Tarragon E, Setalo G, Izura V, Reglodi D, Tamas A, Gabriel R, Herrero MT (2015) Retinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway. Front. Cell. Neurosci. 9, 126. http://www.ncbi.nlm.nih.gov/pubmed/25954153

Yi F, Catudio-Garrett E, Gabriel R, Wilhelm M, Erdelyi F, Szabo G, Deisseroth K, Lawrence JJ (2015) Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front. Synaptic Neurosci. 7, 4. http://www.ncbi.nlm.nih.gov/pubmed/?term=Yi+F%2C+Catudio-Garrett+E%2C+Gabriel+R%2C+Wilhelm+M%2C+Erdelyi+F%2C+Szabo+G%2C+Deisseroth+K%2C+Lawrence+JJ

Retinal electrical synapses team:

Völgyi BKovács-Öller TAtlasz TWilhelm MGábriel R (2013) Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res. 34:1-18. doi: 10.1016/j.preteyeres.2012.12.002. http://www.ncbi.nlm.nih.gov/pubmed/23313713

Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA (2013) Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS One 8(7):e69426. doi: 10.1371/journal.pone.0069426. http://www.ncbi.nlm.nih.gov/pubmed/23936012

Völgyi BDebertin GBalogh MPopovich EKovács-Öller T (2014) Compartment-specific tyrosine hydroxylase-positive innervation to AII amacrine cells in the rabbit retina. Neuroscience 270:88-97. doi: 10.1016/j.neuroscience.2014.03.038. http://www.ncbi.nlm.nih.gov/pubmed/24704514

Kántor O, Varga A, Kovács-Öller T, Énzsöly A, Balogh L, Baksa G, Szepessy Z, Fonta C, Roe AW, Nitschke R, Szél Á, Négyessy L, Völgyi B, Lukáts Á (2014) TNAP activity is localized at critical sites of retinal neurotransmission across various vertebrate species. Cell Tissue Res 358(1):85-98. doi: 10.1007/s00441-014-1944-3. http://www.ncbi.nlm.nih.gov/pubmed/24988913.

Akopian A, Atlasz T, Pan F, Wong S, Zhang Y, Völgyi B, Paul DL, Bloomfield SA (2014) Gap junction-mediated death of retinal neurons is connexin and insult specific: a potential target for neuroprotection. J Neurosci 34(32):10582-91. doi: 10.1523/JNEUROSCI.1912-14.2014. http://www.ncbi.nlm.nih.gov/pubmed/25100592

Kovács-Öller TRaics KOrbán JNyitrai MVölgyi B (2014) Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 358:289-302. doi: 10.1007/s00441-014-1967-9. http://www.ncbi.nlm.nih.gov/pubmed/25110193

Kántor O, Varga A, Tóth R, Énzsöly A, Pálfi E, Kovács-Öller T, Nitschke R, Szél Á, Székely A, Völgyi B, Négyessy L, Somogyvári Z, Lukáts Á (2015) Stratified organization and disorganization of inner plexiform layer revealed by TNAP activity in healthy and diabetic rat retina. Cell Tissue Res 359(2):409-21. doi: 10.1007/s00441-014-2047-x. http://www.ncbi.nlm.nih.gov/pubmed/25411053

Debertin G, Kántor O, Kovács-Öller T, Balogh L, Szabó-Meleg EOrbán JNyitrai MVölgyi B (2015) Tyrosine Hydroxylase Positive Perisomatic Rings are Formed around Various Amacrine Cell Types in the Mammalian Retina. J Neurochem. in press. doi: 10.1111/jnc.13144. http://www.ncbi.nlm.nih.gov/pubmed/25940543

Kántor O, Cserpán D, Völgyi B, Lukáts Á, Somogyvári Z. The Retinal TNAP. Subcell Biochem. 2015;76:107-23. doi: 10.1007/978-94-017-7197-9_6. Review.

Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct. 2016 Jul;221(6):2963-84. doi: 10.1007/s00429-015-1082-z.

Kántor O, Mezey S, Adeghate J, Naumann A, Nitschke R, Énzsöly A, Szabó A, Lukáts Á, Németh J, Somogyvári Z, Völgyi B. Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res. 2016 Jul;365(1):29-50. doi: 10.1007/s00441-016-2376-z.

Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol. 2016 Nov 15;594(22):6679-6699. doi: 10.1113/JP272267.

Dr. Róbert Gábriel: NKFIH119289, National Brain Project KTIA_NAP_13-A-I/12;

Dr. Völgyi Béla: OTKA K105247; National Excellence Program, Szent-Györgyi Albert Senior Researcher Fellowship TÁMOP-4.2.4.A/ 2-11/1-2012-0001; National Brain Project KTIA_NAP_13-2-2015-0008.

Kovács-Öller Tamás: National Excellence Program, Apáczai Csere János Graduate Student Fellowship TÁMOP-4.2.4.A/ 2-11/1-2012-0001.

  • Histological, molecular biological and light- and electronmicroscopical examination of transmitters and their receptors
  • Histological and molecular biological examination of apoptotic mechanisms
  • Imaging experiments (Ca++- imaging)
  • Extracellular electrophysiological recordings
  • Multielectrode extracellular recordings
  • Patch-clamp electrophysiological recordings
  • Molecular neurobiology laboratory (Western-blot, RT-PCR, qPCR)
  • Histology lab (microtomes for light- and electron-microscopy, dissecting microscopes, digital photomicroscope)
  • Electrophysiology lab (3 electrophysiology setups; amplifiers (patch-clamp, extracellular AC, multielectrode MEA, horizontal electrode puller, micromanipulators, ant-vibration table, analog-digital converters, signal synchronization module etc.)
  • Ca++- imaging laboratory (2 TILL photonics system setups, Polychrome 5 monochromator light stimulators, Retiga2000 CCD camera, Andor895 camera, Nikon CCD camera)

Retinal neurobiology research group