About us

A Szentágothai János Kutatóközpont a PTE korszerű, nemzetközi tudományszervezési és menedzsment normák szerint kialakított új intézménye, amely az élettudományi, élettelen természettudományi, valamint környezettudományi oktatás...

Tovább

Bejelentkezés

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Login


Utazás a sejtjeinkbe – betekintettünk a nanovilágba

A szuperrezolúció hallatán talán a kristálytiszta, tűéles képet ígérő legújabb tévécsodák ugranak be legtöbbünknek, a mikroszkópiában azonban mást jelent ez a kifejezés. A fény hullámhossza által jelentett korlátot megkerülő technológiákról van szó, amely révén lehetséges a sejt- vagy akár molekulaszintű és a sejteken belüli élettani folyamatok megfigyelése. A pécsi Általános Orvostudományi Kar Élettani Intézetének Nano-Bio-Imaging Központjában jártunk, ahol többek között a sejtek közötti eddig ismeretlen kommunikációs formákat és azok jelentőségét kutatják a Nobel-díjat érő technológia segítségével.

Első pillantásra nem tűnik különösen izgalmasnak a pécsi orvoskar Élettani Intézetének Nano-Bio-Imaging Központja, bár a zsilipelős beléptetés jelzi, hogy nem akármilyen helyen járunk. A homályosan megvilágított teremben furcsa berendezések találhatók, mellettük pedig nagy méretű monitorokkal ellátott munkaállomások – a képernyőkön mintha színpompás absztrakt festmények képei ragyognának. Kell néhány perc ahhoz, hogy rájöjjek, elképesztő részletgazdagságban ábrázolt sejteket bámulok épp, ahogy ahhoz is, hogy feltűnjön enyhe porallergiám elmúlása.

Porallergiamentes környezet: a Nano-Bio-Imaging Központ belső tere

Mint Wilhelm Ferenctől, a központ műszaki felügyelőjétől megtudom, tünetmentességem a zsilipelős beléptetésnek és a pozitív légnyomást biztosító belső szellőztetőrendszernek köszönhető, amelyek jóvoltából a labor levegője pormentes. Az itt található berendezések ugyanis kényes jószágok, a por vagy a hőmérséklet változás hatására könnyen elállítódnak, amely akár el is lehetetlenítheti a méréseket. Ahhoz azonban, hogy megtudjuk, pontosan mik ezek a berendezések, és miért kóstálnak fejenként akár több százmillió forintot is, részt kell vennem egy rövid mikroszkópiai alapozón, amelyet a központot használó egyik kutató, Lukács András, a Biofizikai Intézet egyetemi docense tart.

Hullámhossz, az (eddigi) végső határ

„A hagyományos fénymikroszkópos technológia számára áthághatatlan határt jelent a fény hullámhossza, ez határozza meg ugyanis a felbontás maximális mértékét, azaz hogy meddig vagyunk képesek megkülönböztetni két különálló pontot. Ezt az úgynevezett diffrakciós limitet meg lehet haladni a más elven működő elektronmikroszkópok lévén, de ez a technika korlátozottan használható az élettani kutatásokban, miután vákuumban, fagyasztott mintákkal kell dolgozni, azaz esélyünk sincs az élet folyamatainak tanulmányozására. Mindez hosszú ideig meggátolta, hogy a sejtekben belüli történéseket láthassuk, és ezt a korlátot szüntette meg az úgynevezett szuperrezolúciós mikroszkópia, avagy nanoszkópia amely különböző trükkös megoldásokkal kerüli ki a fizika által jelentett határokat” – dob bele a mélyvízbe Lukács András.

2014-ben kémiai Nobel-díjat érő felfedezés nyomán különböző szuperrezolúciós, azaz szuperfelbontású technológiák jelentek meg. Az egyik az úgynevezett STED mikroszkóp; itt két lézersugarat használnak az egyes pontok elkülönítéséhez, az egyik gerjeszti a molekulákat, amelyek így fluoreszcencia révén fényt bocsátanak ki, míg a másik alapállapotba juttatja vissza azokat. Az eredmény látványos: míg a monitor egyik felén a hagyományos technológiával készült „pacák” láthatóak, a másik oldalon szépen kirajzolódik a minta szerkezete – mint megtudom, épp egy sejtfelszín struktúráját szemlélem.

Szintlépés: ugyanaz a sejtstruktúra hagyományos (baloldalt) és szuperrezolúciós (jobboldalt)

Ezen a berendezésen az Élettani Intézet két kutatója, Ernszt Dávid és Godó Soma a sejtmembránt tanulmányozza. Míg egy hagyományos fénymikroszkóppal homogénnek tűnő területet láthatnánk, a szuperrezolúciónak köszönhetően egy új világ tárul elénk különféle formájú objektumokkal és struktúrákkal. Ahogy a kutatók magyarázzák, az új mikroszkópos technológiák révén azt már tudni lehet, hogy a sejtmembrán nem homogén felület, hanem egyes régiói fontos szerepet játszanak a jelátviteli folyamatokban, és most ennek kutatják a törvényszerűségeit. Mindennek nagy jelentősége lehet az agykutatásban, és egyes elméletek szerint ezeknek a régióknak a megváltozásának jelentős szerepe lehet a neurodegeneratív betegségek kialakulásában és lezajlásában.

Godó Soma kutató vizsgálatot állít be, háttérben a sejtmembrán

Más elven működik az N-STORM mikroszkóp, amely véletlenszerűen generált kis energiájú lézerimpulzusokkal gerjeszti a mintában található molekulákat, és aztán ezeket összerakva alkot képet, míg eggyel arrébb egy strukturált megvilágítást használó SIM mikroszkóphoz tartozó monitoron különös fonalakat, azaz a sejtek között kapcsolatot létesítő nanocsöveket lehet megszemlélni. A kutatás, illetve a felfedezés újszerűségét jól jelzi, hogy a sejtek közötti kommunikáció ismert formáit újraíró csövek még nem is kerültek be az orvosi tananyagba.

 

Mint kísérőim magyarázzák, minden szuperrezolúciós megoldásnak megvannak a maga előnyei és hátrányai – a STED nagyobb felbontást tesz lehetővé, mint a SIM, az utóbbiban viszont hagyományos módon preparált mintákkal is lehet dolgozni, aminek nagy gyakorlati jelentősége van; az N-STORM kiváló minőségű képet alkot, ám a véletlenszerű képalkotásnak köszönhetően meglehetősen időigényes egy kép elkészítése és így tovább. A pécsi mikroszkópközpont egyik legfőbb erőssége épp a különböző technológiák ötvözésében és ezek sokszínű felhasználásában rejlik.

Utazás a nanók földjére

A hagyományos fénymikroszkópok felbontási határa a mikrométer (a milliméter ezredrésze) körül található, míg a szuperrezolúció elvisz minket a nanométerek (a mikrométer ezredrésze) birodalmába. Ezzel a felbontással már beleláthatunk a sejtekbe és a sejtek közötti folyamatokba, és ez vezetett el a sejtek közötti nanocsövek felfedezéséhez, amelynek következményei még beláthatatlanok.

Limfóma sejtek közötti nanocsövek

A nanocsövek jó része nem éri el a 200 nanométeres szélességet sem, és épp ezért sokáig fogalma sem volt a tudósoknak a létezésükről, hiszen a hagyományos fénymikroszkópok számára ez már láthatatlan, az elektronmikroszkópok számára preparált mintákban pedig nem figyelhetők meg ezek az élő sejtek közötti kapcsolatok, magyarázza Szabó-Meleg Edina, a téma kutatója. A nanocsövek léte újraírta azt, amit a sejtek közötti folyamatokról tudunk, és a betegségek sejtszintű terjedése kapcsán is óriási jelentőségű felfedezés, mivel a kórokozók ezeken át az immunrendszert kikerülve képesek megfertőzni a sejteket – az egy helyi biotechnológiai céggel közösen zajló egyik pécsi kutatás épp a Covid–19 sejtek között történő terjedését vizsgálja egy pályázat részeként. A csövek elsődleges célja természetesen nem a vírusok számára való kiskapu biztosítása, az egyes sejtek mitokondriumot, azaz energiatermelő sejtrészecskéket adnak át például egymásnak ezeken keresztül.

Szabó-Meleg Edina a nanocsövekről tart fejtágítót

Mint ahogy a legtöbb fontos felfedezés, ez is természetesen legalább annyi kérdéshez vezet, mint amennyi választ ad. Pécsett most olyan alapvető kérdésekre keresik a választ zebrahal embriók tanulmányozásával, hogy a csövek milyen sejtek között és milyen kondíciókkal jönnek létre és milyen anyagok átadása zajlik rajtuk keresztül. Az például már kiderült, hogy a „boldogtalan”, azaz különböző anyagokkal és körülményekkel stresszelt sejtek között nagyobb mértékben alakulnak ki ilyenféle kapcsolatok, amelyek révén a sejtek egymásnak segíthetnek, emellett pedig a magzati fejlődésben is valamiféle szerepet játszhatnak.

Hogyan tedd boldoggá a sejtjeidet?

Ennek egyik potenciális felhasználása az lehet, amikor a konkrét betegségek miatt „boldogtalanná” vált sejteknek juttatnak célzottan olyan anyagot, amely az egyéb alkotórészek károsítása nélkül segít rajtuk, de az ilyen gyakorlati alkalmazások még meglehetősen messze vannak. A pécsi kutatók például a szürkehályog műtétek után tanulmányozták a nanocsövek kialakulását a műtéti traumának kitett sejteken. Itt a hagyományos, a hályog „letépésével” járó eljárás után nagy számban találtak ilyen csöveket, míg a lézeres metszést alkalmazó műtétek után nem – az külön érdekesség, hogy a hagyományos, nagyobb sejtszintű traumával járó műtét után a betegek többnyire kevesebb szövődménnyel és gyorsabban gyógyulnak meg.

Miközben pedig az új felfedezések újabb kérdésekhez vezetnek, a mikroszkóp alatt látottak ellenőrzése sem gyerekjáték. Bármilyen apró környezeti változás vagy elhibázott beállítás képalkotási hibákhoz vezethet, amiket kifejezetten nehéz úgy kiszúrni, hogy a kutatók is csak most tanulják ennek a nanovilágnak a szabályait – mint ahogy Lukács András mondja, az ellenőrzési módszerekről is doktori disszertációkat lehet írni. Az is évekbe tellett, míg a klinikusok elfogadták a sejtek közötti nanocsövek létezését, mivel hiába voltak ezek láthatóak a mintákban, az élő szervezeten belüli szövetekben nehezen megtalálhatóak.

Az Élettani Intézet munkatársai (Godó Soma, Ernszt Dávid, Buzás Péter és Wilhelm Ferenc) munka közben

Szabó-Meleg Edina tovább vezet minket a mitokondriumok színpompás(nak tűnő) világában: épp ezeknek a sejtek közötti mozgásával foglalkoznak, és ez például egy olyan kutatási irány, ami világviszonylatban is újnak mondható. A mitokondriumok idegsejtek közötti vándorlásának tanulmányozása többek között közelebb vihet minket az olyan rettegett neurodegeneratív betegségek lefolyásának megértéséhez és remélhetőleg kezeléséhez, mint az Alzheimer- és a Parkinson-kór, ugyanis egyre több bizonyíték utal arra, hogy az idegsejtek károsodása a roncsolt mitokondriumok átadása révén zajlik. A gyógyszeripar egyébként már megkezdte a nanocsövek alkalmazását, bár ez még igencsak kísérleti fázisban tart: a cél az, hogy az úgynevezett nanogyöngyökbe csomagolt hatóanyagot ezeken keresztül juttassák be a megcélzott sejtekbe.

Egy évszázadra elegendő kérdés

A kutatási terület újszerűségét jól mutatja, hogy világviszonylatban sincs túl sok erre a témára dedikált hely. Ahogy a téma pécsi szakértője fogalmaz, „a két kezemen meg tudnám számolni azokat a kutatóhelyeket, ahol a nanocsövekkel foglalkoznak”. Kevés helyen áll ehhez rendelkezésre a megfelelő eszközpark, ráadásul a kutatási eredmények ellenőrzéséhez, továbbfejlesztéséhez fontos a klinikai háttér is.

A nanovilágban tett látogatásunk végén a rengeteg új kérdés mellett egy dolog tűnik biztosnak: a szuperrezolúciós mikroszkópia révén felfedezett új élettani jelenségek és folyamatok ma még beláthatatlan lehetőségeket nyújtanak az élet alapvető folyamatainak megértéséhez és ma még gyógyíthatatlan betegségek kezeléséhez. Egyik kísérőm szavaival élve a szuperrezolúció elegendő kutatási irányt ad az elkövetkező száz évre, mi laikusok pedig addig is gyönyörködhetünk az élő sejtek absztrakt festményeket idéző pompájában.

Forrás: hvg.hu