Rólunk

A Szentágothai János Kutatóközpont a PTE korszerű, nemzetközi tudományszervezési és menedzsment normák szerint kialakított új intézménye, amely az élettudományi, élettelen természettudományi, valamint környezettudományi oktatás...

Tovább

Bejelentkezés

CAPTCHA
Ez a kérdés teszteli, hogy vajon ember-e a látogató, valamint megelőzi az automatikus kéretlen üzenetek beküldését.

Bejelentkezés egyetemi azonosítóval


Retinális neurobiológiai kutatócsoport

  • Kutatási koncepció
  • Munkatársak
  • Publikációk
  • Elnyert pályázatok
  • Szolgáltatások
  • Laboratóriumok, műszerek
  • Galériák
  • Videók

1. Retinális szignalizáció munkacsoport: Dr. Gábriel Róbert egyetemi tanár, Kovács-Valasek Andrea 

Kutatásaink a metabolikus retinadegenerációk folyamatainak mélyebb megértését célozzák kísérletes állatmodellekben. Szeretnénk megtudni, hogy az egyes, emberi retinamegbetegedések hátterében álló metabolikus folymatok hogyan idézik elő a retinális sejtek pusztulását, melyek azok a biokémiai háttérmechanizmusok, amelyek meghúzódnak a látásromlás mögött. Ezek a vizsgálatok lehetővé teszik azt is, hogy különböző módokon megkíséreljük megakadályozni a retinadegeneráció lezajlását, megakadályozva a degenerációs útvonalak aktiválódását vagy előidézve az idegsejtek védelmi folyamatainak megerősítését. Ez utóbbi útvonalak megismerése lehetőséget ad arra, hogy gyógyszerjelölt molekulákat próbáljunk ki és fejlesszünk tovább. Kísérleteink során a retinális információ-feldolgozás, idegi degeneráció és neuroprotekció mechanizmusait is vizsgáljuk.

2. Retinális elektromos szinapszisok munkacsoport: Dr. Völgyi Béla, Dr. Kovács-Öller Tamás, Ganczer Alma, Tengölics Ádám, Szarka Gergely

Alumni: Albert László, Dr. Debertin Gábor, Óhidi-Légmán Anikó, Popovich Erica, Szabó Adrienn, Varga Dániel

A környezetünkből származó információ ~85%-a a retinán keresztül éri el idegrendszerünket, ezért a retinális neuronhálózat működésének megértése esszenciális. Közel 40 éve ismert, hogy az elektromos szinapszisok ennek az idegi hálózatnak alapvető elemei, de ezeknek a képalkotásban betöltött nélkülözhetetlen szerepe csak a közelmúltban vált nyilvánvalóvá. Kutatócsoportunk célja az elektromosan kapcsolt retinális neuronhálózatok szerepének igazolása magasabb rendű látási funkciókban. Munkánkban az elektromos szinapszisokat alkotó fehérjék (connexin – Cx) eloszlásának változásait vizsgáljuk az egyedfejlődés során illetve különböző környezeti tényezők változásainak hatására. Munkánkban különös hangsúlyt kapnak a belső retina elektromos szinapszisai, melyek dúcsejtek és amakrin sejtek között (dúc-dúc, amakrin-amakrin, amakrin-dúc) jönnek létre és a dúcsejtek akcióspotenciál szinkronizációjában vesznek részt. Vizsgáljuk, hogy a dúcsejtek populációs aktivitása hogyan vesz részt az egyes képi mintázatok kódolásában. Szintén vizsgáljuk az elektromos- és kémiai szinaptikus jelátvitel egymásra hatását, esetleges együttműködését. A kutatás eredményei retinális implantátumok algoritmusainak elkészítéséhez és a robotikában alkalmazható bionikus szem létrehozásához szolgáltatnak információt.



Dr. Kovács-Öller Tamás
tudományos munkatárs

+36 72 503-600 /29045
Dr. Kovács-Valasek Andrea
tudományos segédmunkatárs

Ganczer Alma
PhD hallgató

29045
Tengölics Ádám
PhD hallgató

29045
Szarka Gergely
hallgató

29045
Balogh Márton
hallgató

29045
Fülöp Kristóf
hallgató

29045
Balogh Boglárka
hallgató

29045

Retinális szignalizáció munkacsoport:

Kiss P, Szabadfi K, Horvath G, Tamas A, Farkas J, Gabriel R, Reglodi D (2013) Gender-dependent effects of enriched environment and social isolation in ischemic retinal lesion in adult rats. Int. J. Mol. Sci. 14, 16111-16123. http://www.ncbi.nlm.nih.gov/pubmed/23921682

Szabadfi K, Pintér E, Reglodi D, Gábriel R (2014) Neuropeptides, trophic factors and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. Int. Rev. Cell Mol. Biol. 331, 1-121. http://www.ncbi.nlm.nih.gov/pubmed/24952915

Szabadfi K, Estrada C, Fernandez-Villalba E, Tarragon E, Setalo G, Izura V, Reglodi D, Tamas A, Gabriel R, Herrero MT (2015) Retinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway. Front. Cell. Neurosci. 9, 126. http://www.ncbi.nlm.nih.gov/pubmed/25954153

Yi F, Catudio-Garrett E, Gabriel R, Wilhelm M, Erdelyi F, Szabo G, Deisseroth K, Lawrence JJ (2015) Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front. Synaptic Neurosci. 7, 4. http://www.ncbi.nlm.nih.gov/pubmed/?term=Yi+F%2C+Catudio-Garrett+E%2C+Gabriel+R%2C+Wilhelm+M%2C+Erdelyi+F%2C+Szabo+G%2C+Deisseroth+K%2C+Lawrence+JJ

Retinális elektromos szinapszisok munkacsoport:

Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 639 (2020). https://doi.org/10.1038/s41421-020-0180-0

Kovács-Öller T, Ivanova E, Szarka G, Tengölics ÁJ, Völgyi B, Sagdullaev BT. Imatinib Sets Pericyte Mosaic in the Retina. Int J Mol Sci. 2020 Apr 5;21(7):2522. doi: 10.3390/ijms21072522. PMID: 32260484; PMCID: PMC7177598.

Kovács-Öller T, Szarka G, Tengölics ÁJ, Ganczer A, Balogh B, Szabó-Meleg E, Nyitrai M, Völgyi B. Spatial Expression Pattern of the Major Ca2+-Buffer Proteins in Mouse Retinal Ganglion Cells. Cells. 2020 Mar 25;9(4):792. doi: 10.3390/cells9040792. PMID: 32218175; PMCID: PMC7226302.

Tengölics ÁJ, Szarka G, Ganczer A, Szabó-Meleg E, Nyitrai M, Kovács-Öller T, Völgyi B. Response Latency Tuning by Retinal Circuits Modulates Signal Efficiency. Sci Rep. 2019 Oct 22;9(1):15110. doi: 10.1038/s41598-019-51756-y. PMID: 31641196; PMCID: PMC6806000.

Völgyi B, Kenyon GT, Marshak DW, Sagdullaev B. Editorial: Encoding Visual Features by Parallel Ganglion Cell Initiated Pathways in the Healthy, Diseased and Artificial Retina. Front Cell Neurosci. 2019 May 24;13:229. doi: 10.3389/fncel.2019.00229. PMID: 31178700; PMCID: PMC6542953.

Telkes I, Kóbor P, Orbán J, Kovács-Öller T, Völgyi B, Buzás P. Connexin-36 distribution and layer-specific topography in the cat retina. Brain Struct Funct. 2019 Jul;224(6):2183-2197. doi: 10.1007/s00429-019-01876-y. Epub 2019 Jun 6. PMID: 31172263; PMCID: PMC6591202.

Kovács-Öller T, Szarka G, Ganczer A, Tengölics Á, Balogh B, Völgyi B. Expression of Ca2+-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. Int J Mol Sci. 2019 May 7;20(9):2229. doi: 10.3390/ijms20092229. PMID: 31067641; PMCID: PMC6539911.

Kántor O, Szarka G, Benkő Z, Somogyvári Z, Pálfi E, Baksa G, Rácz G, Nitschke R, Debertin G, Völgyi B. Strategic Positioning of Connexin36 Gap Junctions Across Human Retinal Ganglion Cell Dendritic Arbors. Front Cell Neurosci. 2018 Nov 22;12:409. doi: 10.3389/fncel.2018.00409. PMID: 30524239; PMCID: PMC6262005.

Ganczer A, Balogh M, Albert L, Debertin G, Kovács-Öller T, Völgyi B. Transiency of retinal ganglion cell action potential responses determined by PSTH time constant. PLoS One. 2017 Sep 12;12(9):e0183436. doi: 10.1371/journal.pone.0183436. PMID: 28898257; PMCID: PMC5595288.

Kovács-Öller T, Debertin G, Balogh M, Ganczer A, Orbán J, Nyitrai M, Balogh L, Kántor O, Völgyi B. Connexin36 Expression in the Mammalian Retina: A Multiple-Species Comparison. Front Cell Neurosci. 2017 Mar 9;11:65. doi: 10.3389/fncel.2017.00065. PMID: 28337128; PMCID: PMC5343066.

Kántor O, Varga A, Nitschke R, Naumann A, Énzsöly A, Lukáts Á, Szabó A, Németh J, Völgyi B. Bipolar cell gap junctions serve major signaling pathways in the human retina. Brain Struct Funct. 2017 Aug;222(6):2603-2624. doi: 10.1007/s00429-016-1360-4. Epub 2017 Jan 10. PMID: 28070649.

Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol. 2016 Nov 15;594(22):6679-6699. doi: 10.1113/JP272267. Epub 2016 Aug 2. PMID: 27350405; PMCID: PMC5108909.

Kántor O, Mezey S, Adeghate J, Naumann A, Nitschke R, Énzsöly A, Szabó A, Lukáts Á, Németh J, Somogyvári Z, Völgyi B. Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res. 2016 Jul;365(1):29-50. doi: 10.1007/s00441-016-2376-z. Epub 2016 Feb 22. PMID: 26899253.

Kántor O, Cserpán D, Völgyi B, Lukáts Á, Somogyvári Z. The Retinal TNAP. Subcell Biochem. 2015;76:107-23. doi: 10.1007/978-94-017-7197-9_6. PMID: 26219709.

Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct. 2016 Jul;221(6):2963-84. doi: 10.1007/s00429-015-1082-z. Epub 2015 Jul 15. PMID: 26173976.

Debertin G, Kántor O, Kovács-Öller T, Balogh L, Szabó-Meleg E, Orbán J, Nyitrai M, Völgyi B. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015 Aug;134(3):416-28. doi: 10.1111/jnc.13144. Epub 2015 Jun 3. PMID: 25940543.

Kántor O, Varga A, Tóth R, Énzsöly A, Pálfi E, Kovács-Öller T, Nitschke R, Szél Á, Székely A, Völgyi B, Négyessy L, Somogyvári Z, Lukáts Á. Stratified organization and disorganization of inner plexiform layer revealed by TNAP activity in healthy and diabetic rat retina. Cell Tissue Res. 2015 Feb;359(2):409-421. doi: 10.1007/s00441-014-2047-x. Epub 2014 Nov 20. PMID: 25411053.

Kovács-Öller T, Raics K, Orbán J, Nyitrai M, Völgyi B. Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res. 2014 Nov;358(2):289-302. doi: 10.1007/s00441-014-1967-9. Epub 2014 Aug 12. PMID: 25110193.

Akopian A, Atlasz T, Pan F, Wong S, Zhang Y, Völgyi B, Paul DL, Bloomfield SA. Gap junction-mediated death of retinal neurons is connexin and insult specific: a potential target for neuroprotection. J Neurosci. 2014 Aug 6;34(32):10582-91. doi: 10.1523/JNEUROSCI.1912-14.2014. PMID: 25100592; PMCID: PMC4200109.

Kántor O, Varga A, Kovács-Öller T, Énzsöly A, Balogh L, Baksa G, Szepessy Z, Fonta C, Roe AW, Nitschke R, Szél Á, Négyessy L, Völgyi B, Lukáts Á. TNAP activity is localized at critical sites of retinal neurotransmission across various vertebrate species. Cell Tissue Res. 2014 Oct;358(1):85-98. doi: 10.1007/s00441-014-1944-3. Epub 2014 Jul 3. PMID: 24988913.

Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA. Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS One. 2013 Jul 23;8(7):e69426. doi: 10.1371/journal.pone.0069426. PMID: 23936012; PMCID: PMC3720567.

Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res. 2013 May;34:1-18. doi: 10.1016/j.preteyeres.2012.12.002. Epub 2013 Jan 8. PMID: 23313713.

Lakk M, Szabó B, Völgyi B, Gábriel R, Dénes V. Development-related splicing regulates pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the retina. Invest Ophthalmol Vis Sci. 2012 Nov 27;53(12):7825-32. doi: 10.1167/iovs.12-10417. PMID: 23099490.

Osterhout JA, Josten N, Yamada J, Pan F, Wu SW, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B, Inoue T, Bloomfield SA, Barres BA, Berson DM, Feldheim DA, Huberman AD. Cadherin-6 mediates axon-target matching in a non- image-forming visual circuit. Neuron. 2011 Aug 25;71(4):632-9. doi: 10.1016/j.neuron.2011.07.006. PMID: 21867880; PMCID: PMC3513360.

Farajian R, Pan F, Akopian A, Völgyi B, Bloomfield SA. Masked excitatory crosstalk between the ON and OFF visual pathways in the mammalian retina. J Physiol. 2011 Sep 15;589(Pt 18):4473-89. doi: 10.1113/jphysiol.2011.213371. Epub 2011 Jul 18. PMID: 21768265; PMCID: PMC3208219.

Hu EH, Pan F, Völgyi B, Bloomfield SA. Light increases the gap junctional coupling of retinal ganglion cells. J Physiol. 2010 Nov 1;588(Pt 21):4145-63. doi: 10.1113/jphysiol.2010.193268. PMID: 20819943; PMCID: PMC3002447.

Pan F, Paul DL, Bloomfield SA, Völgyi B. Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J Comp Neurol. 2010 Mar 15;518(6):911-27. doi: 10.1002/cne.22254. PMID: 20058323; PMCID: PMC2860380.

Nem került feltöltésre publikáció...

Dr. Gábriel Róbert: NKFIH119289, Nemzeti Agykutatási Program KTIA_NAP_13-A-I/12

Dr. Völgyi Béla: OTKA K105247; Nemzeti Kíválóság Program, Szent-Györgyi Albert Tapasztalt Kutatói Ösztöndíj TÁMOP-4.2.4.A/ 2-11/1-2012-0001; Nemzeti Agykutatói Program KTIA_NAP_13-2-2015-0008.

Dr. Kovács-Öller Tamás: Pécsi Tudományegyetem Tehetségcentruma Fiatal Kiválósága (2019); Szentágothai János Tehetségtámogató Program (2019-2022); PTE, Simonyi Innovációs Díj: CellZeus (2015); Apáczai Csere János Doktoranduszi Ösztöndíj (2013-2014, TÁMOP-4.2.4.A/ 2-11/1-2012-0001); IBRO, In Europe Short Stay Grant: Roska Botond labor, FMI, Basel, Svájc (2013 feb.)

  • Transzmitterek és receptoraik szövettani, molekuláris biológiai, elektronmikroszkópos és elektrofiziológiai vizsgálata
  • Apoptózis mechanizmusok szövettani és molekuláris biológiai vizsgálata
  • Képalkotási mérések (Ca++ -imaging)
  • Extracelluláris elektrofiziológiai elvezetések
  • Sokcsatornás extracelluláris elektrofiziológiai elvezetések
  • Patch-clamp elektrofiziológiai elvezetések
  • Molekuláris neurobiológiai labor (Western-blot, RT-PCR, qPCR)
  • Szövettani labor (Mikrotómok fény- és elektronmikroszkópos munkákhoz, preparáló mikroszkópok, digitális fotomikroszkóp,
  • Elektrofiziológia labor (3 fiziológiai mérőhely; erősítők (patch-clamp, extracelluláris AC, multielektródás MEA, elektródahúzó, elektróda pozícionáló, rezgésmentes asztal, analóg-digitális konverter, jelszinkronizátor)
  • Ca-imaging labor (2 TILL photonics rendszer alapú mérőhely, Polychrome 5 fényforrások, Retiga2000 kamera, Andor895 kamera, Nikon CCD kamera)

Retinális neurobiológiai kutatócsoport

KAPCSOLAT
Dr. Gábriel Róbert
Kutatócsoport Vezető
 
KAPCSOLAT
Dr. Völgyi Béla
Kutatócsoport Vezető
 
 29045